

Contents lists available at ScienceDirect

## **Bioorganic & Medicinal Chemistry Letters**

journal homepage: www.elsevier.com/locate/bmcl



# Potent antimicrobial activity of 3-(4,5-diaryl-1*H*-imidazol-2-yl)-1*H*-indole derivatives against methicillin-resistant *Staphylococcus aureus*

Raed A. Al-Qawasmeh a, Mario Huesca b, Venkata Nedunuri b, Robert Peralta b, Jim Wright b, Yoon Lee b, Aiping Young b

#### ARTICLE INFO

Article history: Received 11 March 2010 Revised 27 April 2010 Accepted 28 April 2010 Available online 17 May 2010

Keywords: Novel antibacterials Gram positive bacteria MRSA

#### ABSTRACT

A new series of antimicrobial derivatives [3-(4,5-diaryl-1*H*-imidazol-2-yl)-1*H*-indole)] have been synthesized with potent activity against strains of *Staphylococcus aureus*, including methicillin-resistant strains (MRSA). Compound **17** [3-(4,5-bis(4-fluorophenyl)-1*H*-imidazol-2-yl)-5-bromo-1*H*-indole], the most active derivative was shown to inhibit the growth of all Gram-positive strains tested, including vancomycin resistant *Enterococcus faecalis* and *Enterococcus faecium* with no activity against Gram-negative bacteria

© 2010 Elsevier Ltd. All rights reserved.

Infections caused by multi-drug resistant bacteria are of major health concern worldwide. Particularly important are infections caused by the Gram-positive bacteria Staphylococcus aureus and species of the genus Enterococcus, due to increasing incidence of infections caused by these microorganisms in hospitals and communities, and their ability of developing antibiotic resistance to multiple antibiotics. New antibacterial agents to treat infections caused by these Gram-positive bacteria have recently been introduced, including the semi-synthetic streptogramins quinupristin/ dalfopristin, daptomycin, the synthetic oxazolidinone linezolid and tigecycline.<sup>2</sup> These new treatment options are welcome additions to the armamentarium against infections caused by Gram-positive bacteria. However, the identification of intrinsically resistant strains, reports of emergence of resistance and serious side effects for some of these new agents, make the development of a diversified pipeline of antimicrobials a necessity.1

Previously, we reported the synthesis and preliminary biological characterization of new 2,4,5 tri-substituted imidazoles, including 3-(4,5-diaryl-1*H*-imidazol-2-yl)-1*H*-indoles, some of which exhibited antibacterial, antifungal or anticancer activities.<sup>3</sup> We report herein the synthesis and structure-antibacterial activity relationship of a series of thirty 3-(4,5-diaryl-1*H*-imidazol-2-yl)-1*H*-indole derivatives against bacterial strains of *S. aureus*, including methicillin-resistant strains (MRSA). We also determined the spec-

trum of activity of one of the most active compounds identified through these studies, compound **17** (3-(4,5-bis (4-fluorophenyl)-1*H*-imidazol-2-yl)-5-bromo-1*H*-indole), against bacterial strains that belong to several Gram-positive and Gram-negative bacterial species. This series of derivatives was obtained via classical condensation of an aldehyde with a dicarbonyl compound to produce an imidazole ring system, with 1*H*-indole-3-carboxyldehyde as our choice of aldehyde, along with symmetrical and unsymmetrical benzil derivatives.

Scheme 1 shows the general synthetic strategy used to synthesize these compounds, and Table 1 shows their structural features. The antimicrobial activity was evaluated by determining the minimal inhibitory concentration (MIC) using the microdilution susceptibility test. MIC values were defined as the lowest concentration at which no visible growth is observed. The results showed a wide range of antimicrobial activities among the different derivatives tested with MIC values ranging from >64  $\mu$ g/mL to 1  $\mu$ g/mL (Table 2). The most active compounds belonged to compounds having the 5-bromoindole moiety. Derivatives 17 and 22 exhibited activities against MRSA comparable to that of vancomycin (MIC 1–2  $\mu$ g/mL) and higher activity than oxacillin (MIC 16 to >64  $\mu$ g/mL) and linezolid (2–4  $\mu$ g/mL).

Table 2, shows the superiority of compounds having bromine on the indole moiety at position 5 over compounds with a methyl group at position 2 in the same moiety, with the exception of compounds 19 and 23. For example, MICs of compounds 16, 17, 20, 21, 22, 24, 27, and 30 are lower than those of the corresponding compounds with the methyl group at position 2 namely 1, 2, 5, 6, 7, 9,

<sup>&</sup>lt;sup>a</sup> Department of Chemistry, The University of Jordan, Amman 11942, Jordan

<sup>&</sup>lt;sup>b</sup> Lorus Therapeutics Inc., 2 Meridian Road, Toronto, Canada M9W 4Z7

<sup>\*</sup> Corresponding author. Tel.: +1 4167981200/311; fax: +1 4167982200. E-mail address: mhuesca@lorusthera.com (M. Huesca).

Scheme 1. Synthesis of the target compounds of general formula C from indole derivatives A and benzil derivatives B. Reagents: (a) NH<sub>4</sub>Ac, AcOH, reflux 4–8 h.

 Table 1

 Structures of synthetic 3-(4,5-diaryl-1*H*-imidazol-2-yl)-1*H*-indole compounds

$$R^4$$
 $R^3$ 
 $R^2$ 
 $R^1$ 
 $R$ 

| Compound | R <sup>1</sup>  | R <sup>2</sup> | R <sup>3</sup>  | $R^4$           | Compound | R <sup>1</sup> | R <sup>2</sup> | $\mathbb{R}^3$  | R <sup>4</sup>  |
|----------|-----------------|----------------|-----------------|-----------------|----------|----------------|----------------|-----------------|-----------------|
| 1        | CH <sub>3</sub> | Н              | Н               | Н               | 16       | Н              | Br             | Н               | Н               |
| 2        | CH <sub>3</sub> | Н              | F               | F               | 17       | Н              | Br             | F               | F               |
| 3        | CH <sub>3</sub> | Н              | $N(CH_3)_2$     | $N(CH_3)_2$     | 18       | Н              | Br             | $N(CH_3)_2$     | $N(CH_3)_2$     |
| 4        | CH <sub>3</sub> | Н              | Br              | Br              | 19       | Н              | Br             | Br              | Br              |
| 5        | CH <sub>3</sub> | Н              | Cl              | Cl              | 20       | Н              | Br             | Cl              | Cl              |
| 6        | CH <sub>3</sub> | Н              | CH <sub>3</sub> | CH <sub>3</sub> | 21       | Н              | Br             | CH <sub>3</sub> | CH <sub>3</sub> |
| 7        | CH <sub>3</sub> | Н              | Н               | Cl              | 22       | Н              | Br             | Н               | Cl              |
| 8        | CH <sub>3</sub> | Н              | Н               | $NO_2$          | 23       | Н              | Br             | Н               | $NO_2$          |
| 9        | CH <sub>3</sub> | Н              | Н               | F               | 24       | Н              | Br             | Н               | F               |
| 10       | CH <sub>3</sub> | Н              | O-Ph            | O-Ph            | 25       | Н              | Br             | O-Ph            | O-Ph            |
| 11       | CH <sub>3</sub> | Н              | Ph              | Ph              | 26       | Н              | Br             | Ph              | Ph              |
| 12       | CH <sub>3</sub> | Н              | Н               | Br              | 27       | Н              | Br             | Н               | Br              |
| 13       | CH <sub>3</sub> | Н              | Н               | Ph              | 28       | Н              | Br             | Н               | Ph              |
| 14       | CH <sub>3</sub> | Н              | $NO_2$          | $NO_2$          | 29       | Н              | Br             | $NO_2$          | $NO_2$          |
| 15       | CH <sub>3</sub> | Н              | Н               | CH <sub>3</sub> | 30       | Н              | Br             | Н               | CH <sub>3</sub> |

 $\label{eq:table 2} \textbf{In vitro antimicrobial activity (MIC $\mu g/mL$) of synthetic compounds tested against strains of \textit{Staphylococcus aureus}^{7,8}$ 

| Compound | MRSA   | MSSA  | Compound | MRSA | MSSA |
|----------|--------|-------|----------|------|------|
| 1        | 4-8    | 8     | 16       | 4    | 4    |
| 2        | 4-32   | 4     | 17       | 1    | 1    |
| 3        | 2-4    | 2     | 18       | 2-4  | 2    |
| 4        | 2-4    | 2-4   | 19       | >64  | >64  |
| 5        | 4      | 4     | 20       | 2-4  | 2-4  |
| 6        | 8      | 8     | 21       | 4    | 2-4  |
| 7        | 8      | 8     | 22       | 1    | 1    |
| 8        | 8      | 8     | 23       | >64  | >64  |
| 9        | 4-8    | 4     | 24       | 2    | 2    |
| 10       | >64    | >64   | 25       | >64  | >64  |
| 11       | >64    | >64   | 26       | >64  | >64  |
| 12       | 4      | 4     | 27       | 2    | 2    |
| 13       | 2-4    | 4     | 28       | 4    | 4    |
| 14       | >64    | >64   | 29       | >64  | >64  |
| 15       | 4-8    | 4     | 30       | 2    | 2    |
| L        | 2-4    | 1-2   | V        | 1-2  | 1    |
| Ox       | 16->64 | 0.5-4 |          |      |      |

L = linezolid; V = vancomycin; Ox = oxacillin.

Table 3 Spectrum of in vitro activity (MIC;  $\mu g/mL)$  of compound 17 against several bacterial species

| Strain           | ATCC # | 17  | V    |
|------------------|--------|-----|------|
| B. subtillis     | 14579  | 2   | 1    |
| B. subtillis     | 6633   | 2   | 0.25 |
| E. faecalis      | 29212  | 2   | 4    |
| E. faecalis      | 51299  | 2   | 16   |
| E. faecium       | 51559  | 2   | >64  |
| M luteus         | 10240  | 1   | 0.25 |
| S. epidermidis   | 13518  | 2   | 0.5  |
| S epidermidis    | 12228  | 2   | 2    |
| S. epidermidis   | 35983  | 2   | 4    |
| S .saprophyticus | 15305  | 2   | 2    |
| S. pneumoniae    | 49150  | 2   | 4    |
| S. dysgalactiae  | 12388  | 2   | 0.5  |
| S. dysgalactiae  | 12394  | 2   | 1    |
| S. pyogenes      | 19615  | 2   | 1    |
| S. sanguinis     | 10556  | 1   | 1    |
| S. agalactiae    | 13813  | 2   | 1    |
| S. agalactiae    | 12386  | 2   | 2    |
| E. coli          | 12435  | >64 | >64  |
| E. coli          | 35333  | >64 | >64  |
| P. aeruginosa    | 19142  | >64 | >64  |
| P. aeruginosa    | 39324  | >64 | >64  |
| S. typhimurium   | 14028  | >64 | >64  |
| S. typhimurium   | 13311  | >64 | >64  |

V = vancomycin.

**12**, and **13**. Substitutions in the phenyl ring at positions 4 and 5 of the imidazole moiety with either nitro, phenoxy or phenyl groups abrogated the activity.

Compounds with halogenated phenyl groups in the imidazole moiety exhibited higher activity than compounds with other substituents at the same positions. Compound 17 was the most active from this series of derivatives. The spectrum of activity of compound 17 against different microorganisms, including Gram-positive and Gram-negative bacteria, was investigated. In addition, its activity was compared with that of vancomycin.

Compound **17** exhibited consistent activity toward all Gram-positive strains tested (Table 3), with MIC values ranging from 1 to 2  $\mu$ g/mL, including *Enterococcus faecium* (ATCC # 51559) and *Enterococcus faecalis* (ATCC # 51299), both of which are resistant to vancomycin (MIC >64  $\mu$ g/mL and 16  $\mu$ g/mL, respectively). Compound **17**, however, showed no activity against Gram-negative bacteria such as *Escherichia coli*, *Pseudomonas aeruginosa* and *Salmonella typhimurium*. These results suggest the selectivity of this new synthetic compound for Gram-positive bacteria.<sup>9</sup>

In conclusion, the structure-antibacterial activity relationship of a new series of 3-(4,5-diaryl-1*H*-imidazol-2-yl)-1*H*-indole derivatives has been described, with some derivatives exhibiting potent in vitro antimicrobial activity against various strains of MRSA and other Gram-positive bacteria. Several synthesized compounds exhibited comparable activity to that of vancomycin and higher activity than oxacillin and linezolid.

The characterization of the antimicrobial spectrum of compound 17 indicates a selective activity of this derivative for Gram-positive bacteria. Studies are currently underway to characterize the mode of action of this series of compounds, including the investigation of possible common mechanisms involved in the growth inhibition of Gram-positive bacteria and cancer cells, since several derivatives were also capable of inhibiting human colon carcinoma cell proliferation (data not shown). Additional studies are also underway to determine the *in vivo* efficacy of selected compounds in several animal models of infection.

### References and notes

- 1. Leclercq, R. Clin. Microbiol. Infect. 2009, 15, 224.
- 2. Cornaglia, G.; Rossolini, G. M. Clin. Microbiol. Infect. 2009, 15, 218.

- 3. (a) Huesca, M.; Al-Qawasmeh, R.; Young, A. H.; Lee, Y. PCT Int. Appl. WO 2004/016086, 2004.; (b) Huesca, M.; Al-Qawasmeh, R.; Young, A. H.; Lee, Y. PCT Int. Appl. WO 2005/047266, 2005.
- (a) Grimmett, M. R. In Comprehensive Heterocyclic Chemistry: The Structure, Reaction, Synthesis and Uses of Heterocyclic Compounds; Katrizky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 5, pp 457–498; (b) Grimmett, M. R. Imidazole and Benzimidazole Synthesis; Academic Press: San Diego Calif, 1997; (c) Sarshar, S.; Siev, D.; Mjalli, M. M. Tetrahedron Lett. 1996, 37, 835; (d) Agarwal, A.; Porwal, S.; Chauhan, P. M. S. Lett. Org. Chem. 2006, 3, 712.
- 5. In this study two indole-3-carboxaldehydes were used, both commercially available. The benzyl compounds either symmetrical or unsymmetrical were synthesized based on the following literature: (a) Ogata, Y.; Takagi, K.; Fujii, Y. J. Org. Chem. 1972, 37, 4026; (b) Adams, R.; Marvel, C. S. In Organic Synthesis; Whiley J. and Sons: New York, 1941; Coll Vol. 1. p 94; (c) Fisher, A.; Grigor, B. A.; Packer, J.; Vaughan, J. J. Am. Chem. Soc. 1961, 83, 4208; (d) Chi, K.-W.; Yusubov, M. S.; Filimonov, V. D. Synth. Commun. 1994, 24, 2119; (e) Armesto, D.; Horspool, W. M.; Ortiz, M. J.; Perez-Ossorio, R. Synthesis 1988, 10, 799; f Baach, H. C. U.S. Patent 3,551385, 1970.; (g) Lau, K.; Arnold, F. Org. Prep. Proced. Int. 1980, 12, 327.
- 6. All the synthetic compounds were fully characterized and show satisfactory physicochemical properties. In a typical experiment 1 mmol (1 equiv) of the indole-3-carboxaldehyde was combined with 1.05 equiv of the benzyl derivative and 20 equiv of ammonium acetate in 5 ml acetic acid. The reaction mixture was refluxed for 3–4 h and the reaction monitored by TLC. The work up of the reaction was done by adding the reaction to a stirred ice-water in which a precipitate formed. The precipitated product was air dried and recrystallized from ethanol. All the compounds were produced in a quantitative yield. <sup>1</sup>H NMR for selected compounds: **4**, mp = 240–245 °C: <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 7.47 (d, 4H), 7.30–7.34 (m, 1H, 7.14–7.19 (m, 3H), 2.68 (s, 3H). Compound **5**: mp = 165–167 °C; <sup>1</sup>H NMR (DMSO- $d_6$ ):  $\delta$  = 12.13 (s, 1H), 11.33 (s, 1H), 7.94 (d, 2H), 7.57 (d, 2H), 7.39 (br d, 2H), 7.35 (d(1H), 7.05–7.12 (m, 3H), 2.5 (s, 3H). Compound **9**: mp = 247–250 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 7.78 (br s, 1H), 7.59 (d, 2H), 7.54 (d, 2H), 7.35–7.39 (m, 2H), 7.28–7.34 (m, 2H), 7.13–7.18 (2H), 7.01–7.05 (m, 2H), 7.27 (br s, 3H). Compound **26**: mp = 155.158 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.08 (d, 4H), 8.07 (br s, 1H), 7.75 (d, 4H), 7.28–7.50 (m, 10H), 7.12 (br d, 2H), 6.97 (br s, 1H), 6.97 (br s, 1H
- 7. National Council of Clinical Laboratory Services (NCCLS). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically M7-A5, National Committee on Clinical Laboratory Standards, 2000; Vol. 20, pp 2. Briefly, 10 μL stock dilutions of each derivative carried out in 50% DMSO were added to microculture wells containing 90 μL volumes of the corresponding bacterial cultures in Mueller–Hinton broth medium, to final concentrations from 64 μg/mL to 0.06 μg/mL.
- 8. A collection of two methicillin susceptible strains (MSSA); ATCC-6538 and ATCC-29213, and six methicillin-resistant strains (MRSA); 1A-218, 1A-318, 1B-374, 1B-315, 1B-185 and 1B-387 were included in the study representing two different epidemic isolates (CMRSA-1A and CMRSA-1B). They were identified by molecular typing by sentinel hospitals as part of the Canadian Nosocomial Infection Surveillance program: Simor, A. E.; Ofner-Agostini, M.; Bryce, E.; Green, K.; McGeer, A.; Mulvey, M.; Paton, S. C.M.A.J. 2001, 165, 21.
- The selectivity of this series of compound for Gram-positive bacteria might be related to an antimicrobial mechanism specific for Gram-positive bacteria, or to their inability to penetrate the outer membrane present in Gram-negative bacteria. The characterization of the mechanism of action of these novel compounds is underway.